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FREQUENCY CONTENT OF COHERENT CHERENKOV RADIATION

John R. Neighbours

Fred R. Buskirk

Xavier K. Maruyama

Naval Postgraduate School

Monterey, California 93943

ABSTRACT

At constant beam energy and propagation angle, the coherent radiation from a charged

particle beam is a function of frequency only. The intensity of the radiation oscillates with

a frequency dependant on the length of the path of the beam and is modulated by the form

factor corresponding to the shape of an individual charge bunch. Calculations are

presented for line charge distributions which have rectangular, triangular, and trapezoidal

axial variation. A point charge distribution is also considered for comparison.
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INTRODUCTION

In previous work, we have discussed the spatial distribution of Cherenkov and

sub-Cherenkov radiation from a charged particle beam in detail' -4 , giving both a

diffraction and an envelope 5 form. The radiation is polarized with the electric vector lying

in the plane of the observer and the direction of propagation of the beam. Both the power

radiated from a beam of periodic charge bunches and the energy radiated by a single bunch

have the same functional form.

The distance of propagation of the beam is shown to be a critical parameter which

affects the onset of Cherenkov radiation as well as the shifting and broadening of the

Cherenkov cone. At short path lengths, the radiation occurs at substanially lower energies

and the radiation pattern is quite broad. As the path length increases, the phase matching

condition between the charge bunch and the wave becomes more stringent so that the

energy threshold rises. Concomitantly, the main cone angle approaches the Cherenkov

angle with an increasing fraction of the total radiation being radiated at that angle.

Our experimental studies' 3 6 of coherent microwave Cherenkov radiation were carried

out with traditional relatively narrow banded X and K band horns, wavegiudes, and

narrow band filters. Along with these experiments, the analysis was performed with the

implicit idea of using narrow band detectors with which the radiation patterns could be

scanned. Now, with the advent of broadband antennas7 , experimental studies of the

frequency distribution of the radiation become possible. This paper preserts predictions

which should be compared to the results of future experiments.
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FREQUENCY DEPENDENCE

The radiation from a charged particle beam has been calculated previously under the

assumption that the bunches in the beam are unchanging in shape and size as the beam

travels through the medium with a velocity v = 3 co , where co is the speed of light in

vacuum. The results are that the coherent radiated power per unit solid angle from a

periodic charged particle beam traveling a finite distance L at constant velocity is
2 2

W(v,k) = v Q R(

where ii is the fundamental frequency of the beam generator and v is a harmonic of of v0 .0

Similarly, E dv, the energy radiated per unit solid angle within the frequency range dv by a

single bunch of charge traveling a distance L is

((v,k) dv = Q R2 dv (2)

The constant Q, and the radiation function R are the same in both cases.

Q = pcq 2/ 8 2 (3)

Here p is the permeability of the medium, q is the charge of an individual bunch, and the

velocity of light in the medium is c = co/n, where n is the index of refraction. The

radiation function R, which includes diffraction effects associated with the path length is

defined to be

R = 2 'r q sin 0 1(u) F(k), (4)

where 0 is the angle between the direction of travel of the charged particle beam and the

direction of propagation of the emitted radiation, the form factor F(k) is given by the

Fourier transform of the charge distribution of an individual bunch, and 1(u) = sinc u is

the diffraction function. The diffraction variable u is given by

u = 7r [(1/nO) - cos 0]j (5)

where q = L/A is the ratio of the path length of the charged particle beam to the

wavelength in the medium of the emitted radiation.
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In our previous work, the emphasis has been on the angular distribution of radiation at

a given frequency, for which the diffraction form is well suited. In this paper the discussion

concentrates on the frequency dependence of the radiation at a fixed angle with the

objective of clarifying how the beam parameters such as path length, bunch length, and rise

time may be determined from measurements of the radiation. For the present discussion,

it is more convenient to use the envelope form of the radiation function

R = 2 G(nO,9) F(k) sin u (6)

in which the spatial envelope function, G(noO) is defined as

G(n3,0) = sin 0 [(n3) - cos 9 "  (7)

We have already noted 5 that both the radiated power W, and the radiated energy E.
2

can be visualized as an oscillatory spatial function modulated by the envelope G . In the

sub-Cherenkov regime (nO < 1), the envelope has a maximum of cot 2 0s where cos 9s = u.3.

In the Cherenkov regime (n3 > 1) the envelope has a singularity at the Cherenkov angle 0,

(cos 0, = 1/nO3), but since this occurs at the Cherenkov angle where u=0, R2 (0e) has a

finite maximum. In both regimes, G2 has zeroes at 0 = 0 and 0 = r. Figure 1 from

reference 5 shows G 2 for both regimes.

Assuming no dispersion i.e. c = vA, the diffraction variable can be written in terms of

frequency as

u = r [(1/nO) -cos 01 (v/fo) (S)

where, for convenience, the path length frequency, fo, is defined in terms of the distance

through which the charged particle beam propagates.

fo = c/L (9)

The charge distribution of a single bunch is p(r) and F(k) is the dimensionless form

factor defined by

p(k) = q F(k) (10)
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where the Fourier components of the charge are
i kr

p(k)= fff p(r) e d3 r (11)

The particular expression for the form factor depends upon the details of the charge

distribution. However, since the wave vector of the emitted radiation is k, and in the

dispersionless approximation, k = 2rv/c, the form factor can be written as a function of

frequency. Although it is not necessary in the formalism, we have usually dealt with

charges having cylindrical symmetry about the beam propagation direction which results in

radiation patterns that also have cylindrical symmetry. This seems to be a good first

approximation for a stable beam and simplifies the analysis.

The radiation function can be expressed as a function of frequency by substituting (S)

into (6) and writing F(k) explicitly as a function of frequency. Since both the radiated

power and the radiated energy are proportional to R2 , it is more convenient to deal with

the square of the radiation function.

R2(n3,O,v) = 4 G2(n3,0) sin 2(av) F2(V) (12)

where

a = [(n/3)-  cos 01 (r/fo) (13)

At constant beam energy and constant propagation direction of the emitted radiation.

the term in square brackets in (13) is constant so that a is a parameter whose value

depends on the path length of the beam through fo. Also, under these conditions, the

envelope function, G2 is constant and consequently the square of the radiation function,
2

(12), is a function of frequency only. Aside from a constant, R (n3,0,v) is the frequency

distribution of radiation emitted at the angle 0 from a charged particle beam of relative

velocity 9' = nO.

Thus, the radiation at constant beam energy and propagation angle consists of an

oscillating sin 2(av) function whose envelope, F2(V), is the square of the form factor.
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The "frequency" of the oscillations in the Cherenkov radiation is a/r which has the

dimensions of Hz-I. However this terminology leads to some confusion. Instead of

"frequency" and "period", we use the terms null density for a/pr and null separation for its

reciprocal.

The sin 2(aV) function has equally spaced zeroes whose null separation Aip = 7r/a is the

spacing of the oscillations in the frequency distribution which result from the finite path

length of the charged particle beam. Normalized to fo, the null separation is
S p-1 "1

= [(n) -cos 01 (14)

which has a singularity at the Cherenkov angle. However, the normalized null density
fo -

K--- = [(n)'- cos 9] (14A)

is finite throughout the entire angular range for both the Cherenkov and sub-Cherenkov

regimes. Fig (2) is a graph of the null density as a function of angle for values of nd3 above

and below the Cherenkov limit.

The oscillations of the frequency distribution of the radiation are of increasing

"frequency" as the angle of propagation moves toward the back direction, i.e., the null

density increases as the angle of propagation increases. In both regimes, the null density

has the relatively small value of ((1/n3)-1) in the forward direction, continues to be small

for small angles, and then increases to a value of ((1/nd3) +1) at 0=7r. In the Cherenkov

regime, the null density passes through zero at the Cherenkov angle, there is no oscillation

in the frequency distribution when the radiation propagates at this angle. This effect is a

consequence of the well known result that at the Cherenkov angle, the radiation remains in

phase with the charge for all frequencies so that the radiation has no frequency dependence.

In the sub-Cherenkov regime, a is never zero so that the frequency distribution of

radiation is always oscillatory. In the Cherenkov regime, a goes to zero at the Cherenkov

angle, and the spatial envelope, G2 has a singularity. However, as noted earlier, in this

6



case the square of the radiation function is finite and depends explicitly upon the path

length of the charged particle beam. This behaviour can most easily be seen by

substituting the Cherenkov condition into (4).

The parameter a depends on the path length L, as well as the propagation angle 9.

For a small value of L, the value of a is large so that the oscillations in the frequency

distribution are closely spaced and vice versa as the path length increases. In what follows

this behaviour is not evident since the calculations and graphs are relative to f0.

7



CHARGE DISTRIBUTION EFFECTS

As mentioned above, our emphasis has been on charge distributions with cylindrical

symmetry; in particular on line charges whose only variation is along the direction of

propagation, z. Most of the interesting effects may be demonstrated with this simple

geometry. With that restriction, the charge distribution is

p (r) = 6 (x) 6 (y) po(z) (15)

where po(z) is the charge per unit length, and in this rase, the form factor becomes a

function of k, only.

k, = k cos 0 = (27r v/c) cos 0 (16)

Using this simplification, we give several elementary examples to show how the frequency

distribution of radiation depends on the charge distribution of a single bunch and the path

length of the beam.

1. Point Charge. The Fourier transform of a b function is a uniform function, so that

the form factor for a point charge is identically unity for all values of k (or v).

Consequently, the only contribution to a variation of radiation with frequency in (12) is the

last factor, sin 2(av). In this case, only the path length of the beam, and the angle of

propagation affect the frequency distribution, and there is no modulation of the oscillations

of the frequency distribution from the form factor. The behaviour of the sin 2(av) function

was discussed in the previous section and plotted in Fig.(2). The frequency distribution for

a point charge is a constant whose value depends on the viewing angle multiplied by the

sin 2(av) factor whose frequency depends on angle as shown in Fig.(2). The results reduce

to the usual calculation of Cherenkov radiation when the wavelength is small compared to

the path length, L.

,, , i • I I I I I8



2. Rectangular Line Charge. A uniform line charge of length X has a constant charge

distribution also of length X. The form factor for this charge distribution is

k z
F(kz) = sinc ( -2 ) (17)

where sinc(x)= ( Substituting for k, gives R2 as
2 2 2

R - 4 G2 [sin (av) sinc (blv) 1 (18)

where a is as before in (13), b, is given by

b, = 7r cos 0 /f, (19)

and the characteristic bunch frequency, fl, is defined as

f, = c/X (20)

For a rigid charged particle beam, the bunch length remains constant. If NJ is the

ratio of path length to bunch length, it is also the ratio of bunch to path frequency by

virtue of (9) and (20).

L f
N 0 (21)

Then b can be expressed in terms of the path frequency

b, = ir cos 0 / N fo (22)

The frequency distribution (18) is of the type alluded to above; the oscillating sin 2(av)

function is modulated by sinc2(btu), the form factor characteristic of a (rectangular) charge

distribution.

Although not a periodic function, sinc 2(biv), the form factor part of (18), has zeroes

with an equal spacing of

Avt = f, sec 0 = NJ fo sec 9 (23)

The number of -,ycles of the oscillating sin 2(av) function which fall between the zeroes of

the form factor depends upon the relative size of the spacings of the frequency zeroes given

by (14) and (23). Both sets are equally spaced, but with values which depend differently

on the propagation angle, in addition to the path and charge dimensions. Their ratio is

9



also the ratio of the parameters a and bi

a AV (nL) - cos 
r1= - - V =o Ni (24)

Just as in an optical diffraction pattern, there are (ri-I) zeroes of the oscillating

sin 2(av) function between the zeroes of the sinc2(btj) modulating function. Furthermore,

(24) shows that the details of the frequency distribution depend on the propagation angle,

the energy (through n3), and the relative dimensions of the path and charge.

The angular portion of (24) is ri/Ni . Fig.(3) shows a plot of the angular portion of

(24) calculated for n3 = 1.1, and for nO3 = 0.9. The behaviour in both iegimes is similar.

The functions have small values at small angles with respect to the forward direction, a

singularity at 90 degrees, and decreasing values in the back direction (0 > 90 ) but larger

than in the forward direction. The two regimes differ in the forward direction where the

function for the Cherenkov regime is negative at angles less than the Cherenkov angle.

For considerations of power or energy, the sign of the functions is unimportant. In order to

display Av 1Avp, Fig.(3) must be multiplied by the ratio N1. The difference between a

plot of (24) and Fig.(3), is only the scale factor N1, and consequently Fig.(3) with an

appropriate scale will, in principle, serve for any combination of path length and bunch

length.

Figures (4) - (7) calculated for N1 = 10, nJO = 1.1, and various angles, show the

frequency dependence of the Cherenkov radiation from a rectangular line charge. Since the

square of the radiation function (12) includes the factor G 2(n/3,0) which becomes very small

at large angles of propagation, a normalized squared radiation function is plotted.

R2/4G2 = sin 2(av)F2 (V) (25)

Table I lists the values of propagation angles, and relative periods for this set of figures.

For ease of understanding, the plots are presented in order of decreasing angle.
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Fig.(4) calculated for the back direction of 13.5 degrees clearly shows the modulation of

the sin 2(av) oscillations by the form factor. As the propagation angle moves toward the

forward direction, the frequency of the sin 2(av) oscillations decreases as shown in Fig.(2),

and the magnitude of the period ratio Avl/Avp decreases as shown in Fig.(3) and Table I.

The result of these two effects is that there are fewer oscillations for a given frequency

interval, and also there are fewer oscillations between zeroes of the modulation function. In

addition, as fewer oscillations occur between the modulation zeroes, the relative signal

intensity decreases since there are now fewer oscillation peaks at the at the higher valued

part of the modulation curve. Thus, it becomes increasingly difficult to discern the shape

and extent of the modulation as the propagation angle decreases. These effects are shown

in Fig.(4)-(6).

As the propagation angle moves further forward, the null density, a/7r, continues to

decrease until it goes to zero at the Cherenkov angle of 0, = 24.6 degrees. Further into the

forward direction the propagation angle is inside the Cherenkov cone. For propagation

directions near the Cherenkov angle, there is a region where IKulAvpI < 1. In this region

the spacings of the oscillations are greater than the spacings between the zeroes of the

modulation function; less than one cycle of oscillation occurs for every modulation zero.

Figure (7), calculated for a propagation angle of 15 degrees, shows the frequency

distribution for this situation where Av1 = 10.4 fo and Avp = -17.6 fo. The result of this

strong modulation is to greatly decrease the relative intensity of the frequency distribution,

since again the oscillations have fewer opportunities to reach their full height when the

modulation function is large.

The extent of the regions in which I r, =AvlAvpI < 1 can be investigated by a

further consideration of Fig.(3). As noted above, N, is the scale factor for the ordinate in

order to make the figure apply to a particular value of L/ y, i.e. to make the figure a plot

of (24). Then the angular values for which Ir, < 1 are given by those parts of the curve

lying between r, - +1 and r, = -1.
11



In the Cherenkov regime the graph of (24) passes through zero at the Cherenkov angle,

and therefore, there is always a region near Oc where I riI < 1. The bounds of this region

depend on the scale factor N1. As N1 increases, the curve for Avbi/Atp becomes steeper, it

intersects the limit lines r, = +1 and r , = -1 more nearly at a right angle, and the region

decreases in angular extent. Whether or not the region reaches to 0 = 0 also depends on

the value of N1. If N1 is larger than((1/nO) - 1)' the part of the curve near zero will

extend beyond r, = -1 and the region will be limited.

At 0 = 7r the value of Fig.(3) is - ((1/nO) + 1) which is approximately -2 for values of

no near 1. Thus it can be seen that for values of N1 sufficiently smaller than one, it is

possible to have an intersection of the Avi/Avp curve with the r, = -1 limit line. This

situation demands a small value for N, whereas the limit near 0 = 0 reqires a large value.

Consequently the two are mutually exclusive; only one can occur for a given value of N1.

For values of N1 between the large and the small limiting cases, neither of these

intersections with the r, = -1 limit will occur.

Thus in the Cherenkov regime, there is always an angular region near 0c where the

modulation period is greater than the oscillation period, and if the path length is large

compared to the bunch length, the region is bounded by an angle greater than zero. If the

bunch length is larger than the path length, the forward region of small r extends to 0 = 0

and there may exist another such region in the back directions. Behaviour in the

sub-Cherenkov regime is exactly the same except that the forward region of small r1

always extends to 0 = 0. Table II shows the limits of the regions for both regimes.

12



S. Triangular Line Charge. The form factor for a triangular charge distribution with a

base length of d is

kzd
F(kz) = sinc ( -4) (26)

To consider other than a uniform line charge distribution it is convenient to use the

average length as a comparison basis. For a uniform charge distribution of length X, the

average length is the charge length X . For a line charge whose charge density varies in a

triangular fashion over the base length d, the average length is one half the base length,

d
X = -T (27)

Using this value, the form factor for a triangular line charge is the square of the form factor

for a rectangular line charge.
kzx' 2

F(k) ={sinc( 2 )} (2S)

Substituting for kz gives R2 as

S= 4 G2 [sin (av) { sinc (b)} 2 (29)

where a is given by (13), and using the average length as defined by (27), and b, is given by

(22) as in the case for the rectangular charge distribution.

The frequency distribution for triangular charge bunch is similar to that of the

rectangular one except that the sinc function is raised to the fourth power instead of the

second. This means that the modulation of the oscillations decreases in value much more

rapidly than for the rectangular charge bunch.

Fig.(8) shows the normalized frequency distribution calculated for n/3 = 1.1, N1 = 10,

and an angle of 0 = 60 degrees. Comparison with Fig.(5), calculated using the same values

for a rectangular charge distribution, shows that the frequency distribution for a triangular

charge decreases much off more rapidly. The frequency distributions for other angles of

propagation behave similarly. Furthermore, in terms of the average length, the discussion

of the region of high modulation (where I ri < 1) is identical to that for the rectangular

charge distribution.

12A



4. Trapezoidal Line Charge. A symmetric trapezoidal charge distribution is

characterized by two lengths; the base length, dj, and the length of the top, d2 . The

Fourier transform of this shape is best expressed in terms of the average length
d1 + d 2

X = 2 (30)

and the rise distance
d 1- d 2

2 (31)

Using these definitions, the form factor is

F(kz) = sinc( 2 ) sinc( 2 ) (32)

The two characteristic lengths each have an associated frequency. The bunch

frequency continues to be defined by (20), while the new rise distance frequency is

f2 = c/b (33)

Substituting for kz, as before, gives the square of the radiation function

R2 = 4 G2 [sin (av) sinc (biv) sinc (b2v)] 2  (34)

where, a is as before, b, is given by (19), and b2 is

b2 = 7r cos 0 / f2  (35)

Continuing to assume a rigid beam so that the the lengths X and 6 remain constant, their

ratio is

N2 = x/6 = f2 / ft (36)

and the ratio of path length to average bunch length,as given by (21), is unaffected. For a

trapezoid, d, > d2, and thus X > 6, so that N2 > 1.

For a rigid beam, b, can be expressed in terms of the path frequency as in (22)

b1= 7r cos 9/ N fo (22)

and b2 can be written in terms of bl.

b2 = b1 / N2  (37)

For this case, the frequency distribution is the familiar sin 2(av) function now

modulated by the product of the squares of two sinc functions; the one containing b,

13



depends on the ratio of path length to bunch length, the one with b. depends on the ratio of

path length to rise distance. The resulting radiation function is similar to those above, but

more complicated, because two parameters, X and b are invovlved.

The ratio of the zero spacings of the bunch average length modulation to those of the

path length oscillations is given by (24). The ratio of the zero spacings of the bunch rise

distance modulation to those of the path length oscillations is (24) multiplied by N2.
- 1Au2(nil) - cos 9

r 2 = - = N2 r = N2 N (38)

As a result of its steep ends, a rectangular charge bunch has a frequency distribution

which is relatively large at high frequencies. Other distributions which have less abrupt

changes in the charge density have a smaller high frequency component. For these other

distributions, it is difficult to display the higher frequency portions of the distribution on a

linear intensity scale, as is evidenced in Fig.(8) for the triangular charge bunch. A

logarithmic scale is more appropriate. Figures (9)-(11) show the frequency distributions

for the rectangular, triangular, and trapezoidal charge distributions, all calculated for the

same angle of propagation, 60 degrees.

In these figures, carried out to 100 fo, the zeroes of the path length oscillations are 2.44

f0 apart, the average length modulation has zeroes with 20 f0 spacing and the rise distance

modulation has a spacing of 50 fo. The resulting differences in the graphs is clearly evident

at the higher harmonics. It is necessary to carry the calculations to such a high harmonic

of the path frequency in order to show the differences; there are very small differences in

the frequency distributions out to approximately the 20 harmonic.

14



DISCUSSION

The results of this paper are expressed by (12), along with the specific forms for the

form factors given, respectively by (17), (26), and (32) for the rectangular, triangular, and

trapezoidal charge distributions. Radiation given off at a particular angle has an

oscillating distribution in frequency which is modulated by the frequency distribution

corresponding to the shape of the charge of an individual bunch. These effects are clearly

seen in Figures (4)-(11). The null density ('frequency') of the oscillations depends on the

velocity of the beam, the angle of propagation of the radiation, the velocity of radiation in

the medium, and on the path length of the beam, as expressed in (13).

Since the modulation of the oscillations is the fourier transform of the charge

distribution, the results are similar to those found in fourier optics for intensity

distributions of diffraction from apertures of the same shape. The spatial envelope given

by G2(nI,O) has a maximum in the sub-Chernkov regime, and is highly peaked in the

neighborhood of the Cherenkov angle in the Cherenkok regime.. Consequently the intensity

of radiation is quite small away from the peak, in the backward or extreme forward

direction. In order to clearly display the effects of beam length, and bunch length and

shape, Figures (4)-(11) show only the square of the normalized radiation function, R2/4G2.

Several simple examples are given, with the rectangular charge bunch discussed in

detail in order to show how the results depend on the propagation angle We note that the

triangular and rectangular shapes are the two limits of the trapezoidal shaped charge

distribution and that the transition from one to the other is continuous so that the detailed

discussion of the angular effects also applies to the triangular and trapezoidal distributions.

A discussion of other shapes is possible, but not necessary.
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There are several special angles at which the above analysis is modified. At the

Cherenkov angle, the value of a as given by (13) is zero and there is no oscillation in

frequency of the radiation. In this case, the radiation from all sources along the path of the

beam arrive at the observer simultaneously in an electromagnetic shock front. The

intensity of this front is finite as mentioned in reference 5.

At a propagation angle of 90 degrees the form factor for any one dimensional charge

shape is identically one, so that there is no modulation of the frequency distribution. Such

a case would lead to an amount of radiation which is unbounded at high frequencies except

that dispersion causes the index of refraction to become less than unity at high

frequencies. At other angles the radiation diminshes at high frequencies because the form

factor always decreases as its argument becomes large.

An implicit assumption in this analysis is that although power is lost through radiation

by the charged particle beam, the resulting slowing of beam along its flight path is

negligible. For a relativistic beam, large changes in energy yield only small changes in/3

which is the important parameter here. As seen from (3) the intensity of the coherent

Cherenkov radiation is proportional to the square of the charge of an individual bunch.

Thus, at high beam current, coherent Cherenkov radiation is expected to be a dominant

loss mechanism, and the energy of the beam may change significantly along its length.

Additionally, the index of refraction is assumed constant. It is well known that

dispersion causes the index to change with frequency, and it may also be affected by

plasma heating of the medium in the vicinity of the beam. The beam is also assumed to be

rigid, i.e. an individual bunch retains its charge and shape as it traverses the path. If the

beam radiates strongly, or has a relatively large emittance, the bunches may not be rigid.

A more detailed analysis would address these considerations.

This analysis could be used as a diagnostic for a charged particle beam. In order to

distinguish between various charge shapes, it would be necessary to receive signals over an

16



extended frequency range as mentioned in discussing Fig. (9-11). Such measurements

could be accomplished using log-periodic antennas or wide band TEM horns. This

discussion assumes that the RF signals propagate unimpeded. In real experiments,

reflections from the surrounding environment must be taken into account

Finally, we note that it is possible to measure the radiated electric field rather than

power. In this case, the comparison of such measurements should be to the radiation

function, not its square, so that the phase must be considered. The minus signs ignored

here then would become meaningful.
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Figure4. Scaled frequency dependence of Cherenkov radiation from a beam
composed of ten rectangular charge bunches for propagation at an angle of 135
degrees with respect to the beam path.
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degrees with respect to the beam path.

22



1.00

RECTANGULAR CHARGE BUNCH
0.80 nf = 1.1

N = 10 Angle = 45

U/)
z
LWI 0.60
H-

> 0.40

-i<y

0.20 _

0.00 1- _ ___l r____ __I ' r

0 10 20 30 40 50

RELATIVE FREQUENCY

Figure6. Scaled frequency dependence of Cherenkov radiation from a beam
composed of ten rectangular charge bunches for propagation at an angle of 45
degrees with respect to the beam path.
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Figure7. Scaled frequency dependence of Cherenkov radiation from a beam
composed of ten rectangular charge bunches for propagation at an angle of 13
degrees with respect to the beam path.
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with respect to the beam path.
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Figure9. Relative intensity (db) of the scaled frequency dependence of Cherenkov
radiation from a beam composed of ten rectangular charge bunches for propagation
at an angle of 60 degrees with respect to the beam path. The reference level is lo =

10-8.
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FigurelO. Relative intensity (db) of the scaled frequency dependence of Cherenkov
radiation from a beam composed of ten triangular charge bunches for propagation at
an angle of 60 degrees with respect to the beam path. The reference level is 10
108.
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TABLE I

Propagation angles and period ratios for a rectangular charge bunch.

Calculated for ri = 10 and n/ - 1.1.

P Av 1  Av I
Angle T _0 f A v P

0 -11.0 10.0 -0.909

15 -17.6 10.4 --0.59

Oc = 24.6 0

45 4.95 14.1 2.86

60 2.44 20.0 8.18

135 0.619 14.1 -22.9

180 0.524 -10.0 -19.1
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Table II

Bounding angles and conditions under wi ch < 1. The ratio of beam path length to

bunch length is N, - The Chevenkov angle is 0, = Cos- 1

Bounding Radiation Angular Conditions
Angle Regime Range on N,

C 1O)= N, n I> 0 <0 a<0 c5 SN=> n.

All ,< Ka< T NJ< n--

COSIb= N, n >1 Gc<Eb< c  None

nC<I O<Ob<r NJ n-3

2 1-n

In the Cherenkov regime, there is no value for Oa if < N, n
n0+
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